
Characteristic Description

Intangible Cannot be touched, only experienced

Developed Engineered, not manufactured

Maintainable Can be modified and updated

Reliable Should work consistently

Efficient Uses resources optimally

Question 1(a) [3 marks]
Define software and explain its characteristics.

Answer:

Software is a collection of computer programs, procedures, and documentation that performs tasks on a
computer system.

Table: Software Characteristics

Key point: Software = Programs + Documentation + Procedures

Mnemonic: "I Don't Make Reliable Electronics" (Intangible, Developed, Maintainable, Reliable, Efficient)

Question 1(b) [4 marks]
Explain classical waterfall model.

Answer:

Waterfall Model is a linear sequential software development approach where each phase must be
completed before the next begins.

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 1 / 30

Requirements Analysis

System Design

Implementation

Testing

Deployment

Maintenance

Key Features:

Sequential phases: No overlap between phases

Documentation-driven: Heavy documentation at each phase

Simple structure: Easy to understand and manage

Fixed requirements: Changes are difficult once started

Mnemonic: "Real Systems Include Testing, Deployment, Maintenance"

Question 1(c) [7 marks]
Explain software process framework and umbrella activities.

Answer:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 2 / 30

Communication

Planning Modeling Construction

Deployment

Umbrella Activities

Framework Activities Umbrella Activities

Communication Software project tracking

Planning Risk management

Modeling Quality assurance

Construction Technical reviews

Deployment Configuration management

Software Process Framework provides the foundation for complete software engineering process by
identifying key process areas.

Table: Framework Activities vs Umbrella Activities

Framework Activities:

Communication: Gather requirements from stakeholders

Planning: Create project plan and schedule

Modeling: Create design models

Construction: Code generation and testing

Deployment: Software delivery and feedback

Umbrella Activities run throughout the project:

Project tracking: Monitor progress

Risk management: Identify and control risks

Quality assurance: Ensure quality standards

Configuration management: Control changes

Mnemonic: "Can People Make Construction Deploy" (Communication, Planning, Modeling, Construction,
Deployment)

Question 1(c) OR [7 marks]
Write a short note on SCRUM.

Answer:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 3 / 30

Product Backlog

Sprint Planning

Sprint
Backlog

Sprint 2-4
weeks

Sprint Review

Sprint
Retrospective

Daily
Scrum

Component Description

Product Owner Defines requirements and priorities

Scrum Master Facilitates process and removes obstacles

Development Team Self-organizing team that builds product

Product Backlog Prioritized list of features

Sprint Backlog Tasks selected for current sprint

SCRUM is an agile framework for managing software development projects using iterative and incremental
practices.

Table: SCRUM Roles and Artifacts

Key Events:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 4 / 30

Characteristic Meaning

Complete All requirements included

Consistent No contradictory requirements

Unambiguous Clear and single interpretation

Verifiable Can be tested and validated

Modifiable Easy to change when needed

Sprint Planning: Select work for upcoming sprint

Daily Scrum: 15-minute daily synchronization

Sprint Review: Demonstrate completed work

Sprint Retrospective: Reflect and improve process

Benefits: Fast delivery, flexibility, continuous improvement, customer collaboration

Mnemonic: "People Sprint Daily Reviewing Retrospectively"

Question 2(a) [3 marks]
Explain characteristic of good SRS.

Answer:

SRS (Software Requirements Specification) document should have specific qualities to be effective.

Table: Good SRS Characteristics

Complete: Contains all functional and non-functional requirements

Consistent: No conflicts between different requirements

Unambiguous: Each requirement has only one interpretation

Mnemonic: "Complete Computers Use Verified Modifications"

Question 2(b) [4 marks]
Describe advantage and disadvantages of prototype model.

Answer:

Prototype Model creates a working model of software to understand requirements better.

Table: Prototype Model - Pros and Cons

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 5 / 30

Advantages Disadvantages

Better requirement understanding Time consuming

User involvement Cost increase

Early error detection Incomplete analysis

User satisfaction Prototype confusion

Planning

Risk
Analysis

Engineering

Customer Evaluation

Quadrant 1:
Planning

Quadrant 2: Risk
Analysis

Quadrant 3:
Engineering

Quadrant 4: Customer
Evaluation

Advantages:

Clear requirements: Users see working model

Early feedback: Reduces final product risks

User involvement: Better user acceptance

Disadvantages:

Extra time: Building prototype takes time

Additional cost: Resources needed for prototype

Scope creep: Users may expect prototype features

Mnemonic: "Better Users Experience" vs "Time Costs Increase"

Question 2(c) [7 marks]
Design and describe Spiral model and give advantages and disadvantages.

Answer:

Spiral Model combines iterative development with systematic risk management through repeated cycles.

Table: Spiral Model Phases

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 6 / 30

Phase Activities

Planning Requirements gathering, resource planning

Risk Analysis Identify and resolve risks

Engineering Development and testing

Customer Evaluation Customer reviews and feedback

Core
Product

Increment
1

Increment
2

Increment
3

Final
Product

Advantages:

Risk management: Early risk identification

Flexibility: Accommodates changes easily

Customer involvement: Regular customer feedback

Quality focus: Continuous testing and validation

Disadvantages:

Complex management: Difficult to manage

High cost: Expensive due to risk analysis

Time consuming: Long development cycles

Risk expertise needed: Requires risk assessment skills

Best for: Large, complex, high-risk projects

Mnemonic: "Plan Risks Engineering Customer" for phases

Question 2(a) OR [3 marks]
Explain Incremental model.

Answer:

Incremental Model delivers software in small, functional pieces called increments.

Key Features:

Partial implementation: Each increment adds functionality

Early delivery: Core features delivered first

Parallel development: Multiple increments can be developed simultaneously

Table: Incremental Model Characteristics

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 7 / 30

Aspect Description

Delivery Multiple releases

Functionality Grows with each increment

Risk Reduced through early delivery

Feedback Continuous user feedback

Phase Duration Activities

Business Modeling Short Define business functions

Data Modeling Short Define data requirements

Process Modeling Short Convert data to business info

Application Generation Short Use tools to create software

Testing & Turnover Short Test and deploy

Mnemonic: "Deliver Functionality Reducing Feedback"

Question 2(b) OR [4 marks]
Write concept of Rapid Application Development model and explain it.

Answer:

RAD (Rapid Application Development) emphasizes rapid prototyping and quick feedback over extensive
planning.

Table: RAD Model Phases

Key Concepts:

Reusable components: Pre-built components speed development

Powerful tools: CASE tools and code generators

Small teams: 2-6 people per team

Time-boxed: Strict time limits (60-90 days)

Requirements for RAD:

Well-defined business requirements

User involvement throughout process

Skilled developers familiar with RAD tools

Mnemonic: "Business Data Process Application Testing"

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 8 / 30

Planning

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Question 2(c) OR [7 marks]
Define SDLC and explain each phase.

Answer:

SDLC (Software Development Life Cycle) is a systematic process for building software through well-
defined phases.

Table: SDLC Phases Detailed

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 9 / 30

Phase Activities Deliverables

Planning Project planning, feasibility study Project plan

Analysis Requirement gathering SRS document

Design System architecture, UI design Design document

Implementation Coding, unit testing Source code

Testing System testing, integration Test reports

Deployment Installation, user training Live system

Maintenance Bug fixes, enhancements Updated system

Skill Category Specific Skills

Technical Understanding SDLC, tools, technologies

Leadership Team motivation, decision making

Communication Clear communication with team and clients

Planning Resource allocation, scheduling

Problem-solving Risk management, conflict resolution

Phase Descriptions:

Planning: Define project scope and resources

Analysis: Understand what system should do

Design: Plan how system will work

Implementation: Build the actual system

Testing: Verify system works correctly

Deployment: Release system to users

Maintenance: Ongoing support and updates

Mnemonic: "People Always Design Implementation, Test Deployment, Maintain"

Question 3(a) [3 marks]
Describe skills to manage software projects.

Answer:

Software Project Management requires combination of technical and soft skills.

Table: Essential Project Management Skills

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 10 / 30

Area Responsibilities

Planning Create project plans, schedules, budgets

Team Management Hire, train, and manage team members

Communication Regular updates to stakeholders

Quality Control Ensure deliverables meet quality standards

Risk Management Identify and mitigate project risks

Key Skills:

People management: Lead and motivate team members

Technical knowledge: Understand development process and tools

Communication: Bridge between technical team and stakeholders

Mnemonic: "Technical Leaders Communicate Planning Problems"

Question 3(b) [4 marks]
Briefly write responsibility of Software Project manager.

Answer:

Software Project Manager oversees entire project from initiation to completion.

Table: Project Manager Responsibilities

Primary Responsibilities:

Project Planning: Define scope, timeline, and resources

Team Leadership: Guide and support development team

Stakeholder Communication: Keep everyone informed of progress

Quality Assurance: Ensure project meets requirements

Risk Management: Handle project risks and issues

Success Factors: On-time delivery, within budget, meeting requirements

Mnemonic: "Plan Team Communication Quality Risk"

Question 3(c) [7 marks]
Classify types of Requirements in SRS (1) Functional Requirements (2) Non-Functional Requirements.

Answer:

Requirements Classification helps organize and understand different types of system needs.

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 11 / 30

Aspect Functional Requirements Non-Functional Requirements

Definition What system should do How system should perform

Focus System functionality System quality attributes

Examples Login, search, calculate Performance, security, usability

Testing Functional testing Performance testing

Type Description Example

Performance Speed and responsiveness Response time < 2 seconds

Security Data protection Encrypted data transmission

Usability User experience Easy to learn interface

Reliability System dependability 99.9% uptime

Scalability Growth handling Support 1000+ users

Table: Functional vs Non-Functional Requirements

Functional Requirements:

User interactions: Login, registration, data entry

Business rules: Validation rules, calculations

System features: Reports, notifications, workflows

Data processing: CRUD operations

Examples:

User can login with username/password

System calculates tax automatically

Generate monthly sales report

Non-Functional Requirements:

Table: Non-Functional Requirement Types

Quality Attributes:

Performance: Response time, throughput

Security: Authentication, authorization, encryption

Usability: User-friendly interface, accessibility

Reliability: Uptime, error handling

Maintainability: Code quality, documentation

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 12 / 30

Aspect Benefit

Clear Communication All stakeholders understand requirements

Project Planning Basis for estimation and scheduling

Quality Assurance Foundation for testing

Change Management Controlled requirement changes

Legal Protection Contract reference document

2024-01-07 2024-01-14 2024-01-21 2024-01-28 2024-02-04 2024-02-11 2024-02-18 2024-02-25 2024-03-03 2024-03-10 2024-03-17 2024-03-24 2024-03-31 2024-04-07 2024-04-14

Requirements

Design

Coding

Testing

Phase 1

Phase 2

Project Schedule

Mnemonic: "Performance Security Usability Reliability Maintainability"

Question 3(a) OR [3 marks]
Illustrate importance of SRS.

Answer:

SRS (Software Requirements Specification) is crucial document that defines what software should do.

Table: SRS Importance

Key Importance:

Communication tool: Bridge between clients and developers

Planning foundation: Helps estimate time, cost, and resources

Testing basis: Test cases derived from SRS requirements

Mnemonic: "Clear Planning Quality Change Legal"

Question 3(b) OR [4 marks]
Explain Gantt Chart.

Answer:

Gantt Chart is a visual project management tool showing tasks, timelines, and dependencies.

Table: Gantt Chart Components

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 13 / 30

Component Description

Tasks Work items to be completed

Timeline Horizontal time scale

Bars Task duration and progress

Dependencies Task relationships

Milestones Important project events

Risk
Identification

Risk
Analysis

Risk Planning

Risk
Monitoring

Benefits:

Visual timeline: Easy to see project schedule

Progress tracking: Monitor task completion

Resource planning: Allocate resources effectively

Dependency management: Understand task relationships

Mnemonic: "Tasks Timeline Bars Dependencies Milestones"

Question 3(c) OR [7 marks]
Write a short note on Risk Management.

Answer:

Risk Management is systematic process of identifying, analyzing, and controlling project risks.

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 14 / 30

Phase Activities Output

Identification Find potential risks Risk list

Analysis Assess probability and impact Risk priority

Planning Develop response strategies Risk response plan

Monitoring Track and control risks Updated risk status

Category Examples

Technical Technology changes, complexity

Project Schedule delays, resource shortage

Business Market changes, funding issues

External Vendor problems, regulatory changes

Table: Risk Management Process

Risk Categories:

Table: Types of Software Risks

Risk Response Strategies:

Avoid: Eliminate risk source

Mitigate: Reduce probability or impact

Transfer: Share risk with others

Accept: Live with the risk

Risk Assessment: Probability × Impact = Risk Exposure

Benefits: Proactive problem solving, better project success rate, stakeholder confidence

Mnemonic: "Identify Analyze Plan Monitor" for process, "Avoid Mitigate Transfer Accept" for strategies

Question 4(a) [3 marks]
What is metric for size estimation? Explain FP with example.

Answer:

Size Estimation Metrics help predict software project size and effort.

Table: Size Estimation Metrics

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 15 / 30

Metric Description

LOC Lines of Code

Function Points Functionality-based measurement

Object Points For object-oriented systems

Feature Points Enhanced function points

Function Points (FP) measure software size based on user functionality.

FP Components:

External Inputs: Data entry screens

External Outputs: Reports, messages

External Queries: Database queries

Internal Files: Data stores

External Interfaces: System connections

FP Calculation Example:
For a Library Management System:

External Inputs: 5 (Book entry, Member entry, etc.)

External Outputs: 3 (Reports)

External Queries: 4 (Search functions)

Internal Files: 2 (Book DB, Member DB)

External Interfaces: 1 (Online catalog)

Simple FP = 5 + 3 + 4 + 2 + 1 = 15 Function Points

Mnemonic: "Inputs Outputs Queries Files Interfaces"

Question 4(b) [4 marks]
Explain project estimation techniques using basic COCOMO model.

Answer:

COCOMO (COnstructive COst MOdel) estimates software development effort and schedule.

Table: COCOMO Model Types

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 16 / 30

Type Description Accuracy

Basic Simple size-based estimation ±75%

Intermediate Includes cost drivers ±25%

Detailed Phase-level estimation ±10%

Project Type a b c d

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Sprint Goal: User
Authentication Module

Sprint Duration: 2 weeks
Total Story Points: 40

Basic COCOMO Formula:

Effort = a × (KLOC)^b person-months

Time = c × (Effort)^d months

People = Effort / Time

Table: COCOMO Constants

Example: For 10 KLOC organic project

Effort = 2.4 × (10)^1.05 = 25.47 person-months

Time = 2.5 × (25.47)^0.38 = 8.64 months

People = 25.47 / 8.64 = 3 people

Mnemonic: "Organic Semi Embedded" for project types

Question 4(c) [7 marks]
Prepare Sprint burn down chart for system of your choice.

Answer:

Sprint Burn Down Chart tracks remaining work during a sprint for Online Shopping System.

Sprint Backlog:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 17 / 30

Task Story Points Day Assigned

User Registration 8 Day 1-2

User Login 6 Day 3-4

Password Reset 5 Day 5-6

Profile Management 8 Day 7-8

Session Management 6 Day 9-10

Testing & Bug Fixes 7 Day 11-14

Day Ideal Remaining Actual Remaining Work Completed

Day 0 40 40 Sprint Start

Day 2 36 38 Registration delay

Day 4 32 32 Login completed

Day 6 28 27 Password reset done early

Day 8 24 26 Profile management issues

Day 10 20 20 Back on track

Day 12 16 15 Testing progressing well

Day 14 0 0 Sprint completed

Table: Sprint Tasks

Burn Down Chart Data:

Table: Daily Progress

Chart Analysis:

Green line: Ideal burn down

Red line: Actual progress

Variations: Show challenges and recoveries

Completion: Sprint finished on time

Benefits: Visual progress tracking, early problem identification, team motivation

Mnemonic: "Track Progress Daily, Identify Issues Early"

Question 4(a) OR [3 marks]

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 18 / 30

Component Symbol Description

Actor Stick figure External entity interacting with system

Use Case Oval System functionality

System Boundary Rectangle System scope

Association Line Actor-Use Case relationship

Generalization Arrow Inheritance relationship

Explain the component of USE CASE diagram.

Answer:

Use Case Diagram shows system functionality from user perspective.

Table: Use Case Diagram Components

Relationships:

Include: One use case includes another (mandatory)

Extend: Optional use case extension

Generalization: Parent-child relationship

Example Components:

Primary Actor: Customer, Admin

Use Cases: Login, Search Products, Place Order

System: Online Shopping System

Mnemonic: "Actors Use Systems, Associate Generally"

Question 4(b) OR [4 marks]
Compare Cohesion and Coupling.

Answer:

Cohesion and Coupling are important software design principles affecting maintainability.

Table: Cohesion vs Coupling Comparison

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 19 / 30

Aspect Cohesion Coupling

Definition Unity within module Dependency between modules

Desirable Level High cohesion preferred Low coupling preferred

Focus Internal module unity Inter-module relationships

Impact Module reliability System flexibility

Measurement How related are module elements How dependent modules are

Cohesion Types (Low to High):

Coincidental: Random grouping

Logical: Similar logic

Temporal: Same time execution

Procedural: Sequential steps

Communicational: Same data

Sequential: Output of one is input of next

Functional: Single purpose

Coupling Types (High to Low):

Content: Direct access to module internals

Common: Shared global data

External: Shared external interface

Control: Control information passed

Stamp: Data structure passed

Data: Simple data passed

Goal: High Cohesion + Low Coupling = Good Design

Mnemonic: "High Cohesion, Low Coupling" for good design

Question 4(c) OR [7 marks]
Explain Risk Assessment in detail.

Answer:

Risk Assessment evaluates identified risks to prioritize management efforts.

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 20 / 30

Risk
Identification

Risk Assessment

Probability Analysis Impact
Analysis

Risk Exposure Calculation

Risk Prioritization

Element Description Scale

Probability Likelihood of risk occurring 0.1 to 1.0

Impact Consequences if risk occurs 1 to 10

Risk Exposure Probability × Impact Calculated value

Risk Level Priority classification High/Medium/Low

Risk Assessment Components:

Table: Risk Assessment Elements

Assessment Process:

1. Probability Assessment:

Very Low (0.1): Unlikely to happen

Low (0.3): Possible but not probable

Medium (0.5): May or may not happen

High (0.7): Likely to happen

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 21 / 30

Risk Probability Impact Exposure Priority

Key developer leaves 0.3 8 2.4 Medium

Requirements change 0.7 6 4.2 High

Technology failure 0.2 9 1.8 Low

Budget cuts 0.4 7 2.8 Medium

Very High (0.9): Almost certain

2. Impact Assessment:

Catastrophic (9-10): Project failure

Critical (7-8): Major delays/cost overrun

Marginal (4-6): Some impact on schedule/budget

Negligible (1-3): Little impact

3. Risk Exposure Calculation:
Risk Exposure = Probability × Impact

Example Risk Assessment:

Table: Sample Risk Analysis

Risk Matrix:

High Priority: Exposure > 4.0

Medium Priority: Exposure 2.0-4.0

Low Priority: Exposure < 2.0

Assessment Benefits:

Objective prioritization: Data-driven decisions

Resource allocation: Focus on high-risk items

Communication tool: Clear risk communication

Planning input: Influences project planning

Mnemonic: "Probability Impact Exposure Priority"

Question 5(a) [3 marks]
Explain code inspection technique in code review.

Answer:

Code Inspection is formal, systematic examination of code to find defects.

Table: Code Inspection Process

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 22 / 30

Phase Participants Activities

Planning Moderator Schedule inspection, distribute code

Overview Author, Team Author explains code

Preparation Individual Each reviewer studies code

Inspection All reviewers Find defects systematically

Rework Author Fix identified defects

Follow-up Moderator Verify fixes

Test Case
ID

Test Scenario Input Expected Output Result

TC001 Valid PIN Entry Correct 4-digit PIN
Access granted, main menu
displayed

Pass/Fail

TC002
Invalid PIN
Entry

Wrong PIN (3
attempts)

Card blocked, error message Pass/Fail

TC003
Cash
Withdrawal

Amount ≤ Account
balance

Cash dispensed, receipt
printed

Pass/Fail

TC004
Insufficient
Balance

Amount > Account
balance

Transaction declined, balance
shown

Pass/Fail

Key Features:

Formal process: Structured approach with defined roles

Systematic review: Line-by-line examination

Defect focused: Find errors, not solutions

No author criticism: Focus on code, not coder

Benefits: Early defect detection, knowledge sharing, improved code quality

Mnemonic: "Plan Overview Prepare Inspect Rework Follow-up"

Question 5(b) [4 marks]
Prepare at least four test cases of ATM.

Answer:

ATM Test Cases verify automated teller machine functionality.

Table: ATM Test Cases

Detailed Test Cases:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 23 / 30

Test Case 1: Valid Login

Precondition: ATM is operational, card inserted

Steps: Enter correct PIN → Press Enter

Expected: Main menu with options displayed

Test Case 2: Cash Withdrawal

Precondition: User logged in, sufficient balance

Steps: Select Withdrawal → Enter amount → Confirm

Expected: Cash dispensed, balance updated

Test Case 3: Balance Inquiry

Precondition: User logged in

Steps: Select Balance Inquiry

Expected: Current balance displayed on screen

Test Case 4: PIN Change

Precondition: User logged in

Steps: Select Change PIN → Enter old PIN → Enter new PIN → Confirm

Expected: PIN changed successfully, confirmation message

Mnemonic: "Login Withdraw Inquiry Change"

Question 5(c) [7 marks]
Describe white box testing.

Answer:

White Box Testing examines internal code structure and logic paths.

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 24 / 30

Source
Code

Control Flow Analysis

Path Coverage

Test Case
Design

Test
Execution

Coverage
Analysis

Aspect Description

Focus Internal code structure

Knowledge Code implementation details

Coverage Statements, branches, paths

Techniques Basis path, loop testing

Tools Code coverage analyzers

Table: White Box Testing Characteristics

Coverage Criteria:

Table: Coverage Types

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 25 / 30

Coverage Type Description Goal

Statement Coverage Execute every statement 100% statements

Branch Coverage Execute every branch All if-else paths

Path Coverage Execute every path All possible paths

Condition Coverage Test all conditions True/false for each condition

White Box Testing Techniques:

1. Basis Path Testing:

Calculate Cyclomatic Complexity: V(G) = E - N + 2

E = Edges, N = Nodes in control flow graph

Generate independent paths equal to V(G)

2. Loop Testing:

Simple loops: Test 0, 1, 2, typical, max iterations

Nested loops: Test inner loop first, then outer

Concatenated loops: Test as separate loops

3. Condition Testing:

Test all logical conditions (AND, OR, NOT)

Ensure each condition evaluates to true and false

Example: Simple Code Testing

Test Cases:

age=20, income=30000 (both true) → approve

age=16, income=30000 (first false) → reject

age=20, income=20000 (second false) → reject

age=16, income=20000 (both false) → reject

Advantages:

Thorough testing: Tests internal logic

Early defect detection: Finds logic errors

Coverage measurement: Quantifiable testing progress

if (age >= 18 AND income > 25000)
 approve_loan();
else
 reject_loan();

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 26 / 30

Phase Description Duration

Preparation Author prepares presentation 30 minutes

Presentation Author explains code logic 1-2 hours

Discussion Team asks questions, suggests improvements 30 minutes

Documentation Record issues and action items 15 minutes

Disadvantages:

Time consuming: Requires code knowledge

Expensive: Needs skilled testers

Maintenance: Changes with code updates

Tools: JUnit (Java), NUnit (.NET), Coverage.py (Python)

Mnemonic: "Statement Branch Path Condition" for coverage types

Question 5(a) OR [3 marks]
Explain code walk through Technique in code review.

Answer:

Code Walk Through is informal code review technique where author presents code to team.

Table: Walk Through Process

Key Characteristics:

Author-led: Code author drives the session

Informal process: Less structured than inspection

Educational: Team learns about code functionality

Collaborative: Open discussion encouraged

Participants:

Author: Presents and explains code

Reviewers: Ask questions and provide feedback

Moderator: Keeps discussion focused (optional)

Benefits: Knowledge sharing, early problem detection, team collaboration, learning opportunity

Mnemonic: "Prepare Present Discuss Document"

Question 5(b) OR [4 marks]

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 27 / 30

Type Purpose Audience

User Documentation How to use software End users

System Documentation Technical details Developers, maintainers

Process Documentation Development process Project team

Requirements Documentation What system should do All stakeholders

Explain software documentation.

Answer:

Software Documentation provides information about software system for various stakeholders.

Table: Documentation Types

Internal Documentation:

Code comments: Explain complex logic

Function headers: Describe purpose and parameters

Variable names: Self-documenting identifiers

README files: Project overview and setup

External Documentation:

User manuals: Step-by-step usage instructions

Installation guides: Setup procedures

API documentation: Interface specifications

Training materials: Educational content

Benefits:

Maintainability: Easier code updates

Knowledge transfer: New team members learn faster

User support: Reduces support requests

Quality assurance: Documents requirements and design

Documentation Standards: Consistent format, regular updates, version control, accessibility

Mnemonic: "User System Process Requirements" for types

Question 5(c) OR [7 marks]
Write a short note on black box testing.

Answer:

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 28 / 30

Input
Software System

Black Box
OutputTest

Cases

Expected Results

Compare

Aspect Description

Focus External behavior

Knowledge Requirements and specifications

Approach Input-output relationship

Coverage Functional requirements

Perspective User viewpoint

Technique Description Example

Equivalence
Partitioning

Divide inputs into valid/invalid
classes

Age: 0-17, 18-65, >65

Boundary Value
Analysis

Test at boundaries Test age: 17, 18, 65, 66

Decision Table Complex business rules Insurance premium calculation

State Transition System state changes
ATM states: idle, processing,
error

Black Box Testing examines software functionality without knowledge of internal code structure.

Table: Black Box Testing Characteristics

Black Box Testing Techniques:

Table: Testing Techniques

1. Equivalence Partitioning:

Valid partitions: Accepted inputs

Invalid partitions: Rejected inputs

Test one value from each partition

Example: Password length (6-12 characters)

Valid: 6-12 characters

Invalid: <6 characters, >12 characters

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 29 / 30

2. Boundary Value Analysis:

Test minimum, maximum, just below minimum, just above maximum

Most errors occur at boundaries

Example: For range 1-100

Test: 0, 1, 2, 99, 100, 101

3. Decision Table Testing:

Conditions: Input conditions

Actions: Expected outputs

Rules: Condition-action combinations

Advantages:

User perspective: Tests from user viewpoint

No code knowledge needed: Testers don't need programming skills

Unbiased: Not influenced by code implementation

Early testing: Can start with requirements

Disadvantages:

Limited coverage: May miss some code paths

Redundant testing: Might test same logic multiple times

Difficult test case design: Hard without internal knowledge

Types of Black Box Testing:

Functional Testing: Core functionality

Non-functional Testing: Performance, usability

Regression Testing: After changes

User Acceptance Testing: Final validation

Tools: Selenium (web), Appium (mobile), TestComplete, QTP

When to Use:

System testing phase

User acceptance testing

Integration testing

Regression testing

Mnemonic: "Equivalence Boundary Decision State" for techniques

Software Engineering (4353202) - Winter 2024 Solution by Milav Dabgar

No. 30 / 30

	Question 1(a) [3 marks]
	Question 1(b) [4 marks]
	Question 1(c) [7 marks]
	Question 1(c) OR [7 marks]
	Question 2(a) [3 marks]
	Question 2(b) [4 marks]
	Question 2(c) [7 marks]
	Question 2(a) OR [3 marks]
	Question 2(b) OR [4 marks]
	Question 2(c) OR [7 marks]
	Question 3(a) [3 marks]
	Question 3(b) [4 marks]
	Question 3(c) [7 marks]
	Question 3(a) OR [3 marks]
	Question 3(b) OR [4 marks]
	Question 3(c) OR [7 marks]
	Question 4(a) [3 marks]
	Question 4(b) [4 marks]
	Question 4(c) [7 marks]
	Question 4(a) OR [3 marks]
	Question 4(b) OR [4 marks]
	Question 4(c) OR [7 marks]
	Question 5(a) [3 marks]
	Question 5(b) [4 marks]
	Question 5(c) [7 marks]
	Question 5(a) OR [3 marks]
	Question 5(b) OR [4 marks]
	Question 5(c) OR [7 marks]

