Caesar Cipher
The Foundation of Substitution Cryptography
Julius Caesar's Secret Communication Method
Historical Origins
Julius Caesar (100-44 BCE) used this cipher to communicate with his generals during military campaigns, shifting each letter by 3 positions in the alphabet.
Historical Context:
- Roman Empire: Need for secure military communication
- Literacy Rates: Most people couldn't read, adding security
- Simple Implementation: Could be done by hand without tools
- Effective for its Time: Adequate against contemporary threats
Caesar Cipher Definition
Caesar Cipher is a type of substitution cipher where each letter in the plaintext is shifted a certain number of places down or up the alphabet.
Key Characteristics:
- Shift Cipher: Also known as shift cipher
- Monoalphabetic: One alphabet used for entire message
- Symmetric: Same key for encryption and decryption
- Additive Cipher: Each letter replaced by letter k positions ahead
Caesar Cipher Algorithm
Encryption Formula:
C = (P + K) mod 26
- C = Ciphertext letter position
- P = Plaintext letter position (A=0, B=1, ..., Z=25)
- K = Key (shift value)
Decryption Formula:
P = (C - K) mod 26
Alphabet Shift Example (K=3)
Original Alphabet:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Shifted Alphabet (Shift +3):
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2
Mapping:
A→D, B→E, C→F, D→G, E→H, F→I, G→J, H→K, I→L, J→M
K→N, L→O, M→P, N→Q, O→R, P→S, Q→T, R→U, S→V, T→W
U→X, V→Y, W→Z, X→A, Y→B, Z→C
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Shifted Alphabet (Shift +3):
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2
Mapping:
A→D, B→E, C→F, D→G, E→H, F→I, G→J, H→K, I→L, J→M
K→N, L→O, M→P, N→Q, O→R, P→S, Q→T, R→U, S→V, T→W
U→X, V→Y, W→Z, X→A, Y→B, Z→C
Encryption Example
Plaintext: "HELLO WORLD"
Key (Shift): 3
Step-by-step Encryption:
H (7) + 3 = 10 = K
E (4) + 3 = 7 = H
L (11) + 3 = 14 = O
L (11) + 3 = 14 = O
O (14) + 3 = 17 = R
W (22) + 3 = 25 = Z
O (14) + 3 = 17 = R
R (17) + 3 = 20 = U
L (11) + 3 = 14 = O
D (3) + 3 = 6 = G
Ciphertext: "KHOOR ZRUOG"
Key (Shift): 3
Step-by-step Encryption:
H (7) + 3 = 10 = K
E (4) + 3 = 7 = H
L (11) + 3 = 14 = O
L (11) + 3 = 14 = O
O (14) + 3 = 17 = R
W (22) + 3 = 25 = Z
O (14) + 3 = 17 = R
R (17) + 3 = 20 = U
L (11) + 3 = 14 = O
D (3) + 3 = 6 = G
Ciphertext: "KHOOR ZRUOG"
Decryption Example
Ciphertext: "KHOOR ZRUOG"
Key (Shift): 3
Step-by-step Decryption:
K (10) - 3 = 7 = H
H (7) - 3 = 4 = E
O (14) - 3 = 11 = L
O (14) - 3 = 11 = L
R (17) - 3 = 14 = O
Z (25) - 3 = 22 = W
R (17) - 3 = 14 = O
U (20) - 3 = 17 = R
O (14) - 3 = 11 = L
G (6) - 3 = 3 = D
Plaintext: "HELLO WORLD"
Key (Shift): 3
Step-by-step Decryption:
K (10) - 3 = 7 = H
H (7) - 3 = 4 = E
O (14) - 3 = 11 = L
O (14) - 3 = 11 = L
R (17) - 3 = 14 = O
Z (25) - 3 = 22 = W
R (17) - 3 = 14 = O
U (20) - 3 = 17 = R
O (14) - 3 = 11 = L
G (6) - 3 = 3 = D
Plaintext: "HELLO WORLD"
Handling Wrap-Around
Problem: What happens when we go past Z?
Example with Shift 3:
X (23) + 3 = 26 mod 26 = 0 = A
Y (24) + 3 = 27 mod 26 = 1 = B
Z (25) + 3 = 28 mod 26 = 2 = C
Decryption Wrap-Around:
A (0) - 3 = -3 mod 26 = 23 = X
B (1) - 3 = -2 mod 26 = 24 = Y
C (2) - 3 = -1 mod 26 = 25 = Z
Rule: If result is negative, add 26
X (23) + 3 = 26 mod 26 = 0 = A
Y (24) + 3 = 27 mod 26 = 1 = B
Z (25) + 3 = 28 mod 26 = 2 = C
Decryption Wrap-Around:
A (0) - 3 = -3 mod 26 = 23 = X
B (1) - 3 = -2 mod 26 = 24 = Y
C (2) - 3 = -1 mod 26 = 25 = Z
Rule: If result is negative, add 26
Different Shift Values
Message: "ATTACK"
Shift 1: BUUBDL
Shift 5: FYYFHP
Shift 10: KDDKMU
Shift 13: NGGNPX (ROT13)
Shift 20: UFFUGE
Shift 25: ZSSZBJZ
Note: Shift 0 = original text
Note: Shift 26 = same as shift 0
Shift 1: BUUBDL
Shift 5: FYYFHP
Shift 10: KDDKMU
Shift 13: NGGNPX (ROT13)
Shift 20: UFFUGE
Shift 25: ZSSZBJZ
Note: Shift 0 = original text
Note: Shift 26 = same as shift 0
ROT13 - Special Case
ROT13: Caesar cipher with shift of 13, has special property that encryption and decryption use the same operation.
Why ROT13 is Special:
26 ÷ 2 = 13
Applying ROT13 twice returns original text:
HELLO → URYYB → HELLO
Modern Uses:
• Hide spoilers in online forums
• Obscure potentially offensive content
• Simple text obfuscation
• Not for real security!
26 ÷ 2 = 13
Applying ROT13 twice returns original text:
HELLO → URYYB → HELLO
Modern Uses:
• Hide spoilers in online forums
• Obscure potentially offensive content
• Simple text obfuscation
• Not for real security!
Programming Implementation
Python Implementation:
def caesar_encrypt(text, shift):
result = ""
for char in text:
if char.isalpha():
ascii_offset = 65 if char.isupper() else 97
shifted = (ord(char) - ascii_offset + shift) % 26
result += chr(shifted + ascii_offset)
else:
result += char
return result
Usage:
caesar_encrypt("HELLO", 3) → "KHOOR"
def caesar_encrypt(text, shift):
result = ""
for char in text:
if char.isalpha():
ascii_offset = 65 if char.isupper() else 97
shifted = (ord(char) - ascii_offset + shift) % 26
result += chr(shifted + ascii_offset)
else:
result += char
return result
Usage:
caesar_encrypt("HELLO", 3) → "KHOOR"
Breaking Caesar Cipher
Frequency Analysis Attack:
- Caesar cipher preserves letter frequencies
- Most common letter in English is 'E'
- Find most frequent letter in ciphertext
- Calculate shift from 'E' to that letter
Example:
If 'H' is most frequent in ciphertext:
E → H means shift of 3
Try decryption with shift -3
If 'H' is most frequent in ciphertext:
E → H means shift of 3
Try decryption with shift -3
Brute Force Attack
Small Key Space: Only 25 possible keys (excluding 0)
Ciphertext: "KHOOR"
Shift 1: JGNNQ
Shift 2: IFMMP
Shift 3: HELLO ← Readable!
Shift 4: GDKKN
Shift 5: FCJJM
...
Result: Can try all possibilities in seconds
Shift 1: JGNNQ
Shift 2: IFMMP
Shift 3: HELLO ← Readable!
Shift 4: GDKKN
Shift 5: FCJJM
...
Result: Can try all possibilities in seconds
Security Weaknesses
- Small Key Space: Only 25 possible keys
- Frequency Preservation: Statistical patterns maintained
- Pattern Recognition: Word patterns remain visible
- Known Plaintext: One word can reveal entire key
- No Key Distribution: Key must be shared beforehand
Conclusion: Caesar cipher provides no real security against modern cryptanalysis
Caesar Cipher Variations
Historical Improvements:
- Keyword Caesar: Shift based on keyword letters
- Progressive Caesar: Increase shift for each letter
- Random Caesar: Different shift for each letter
- Affine Cipher: Combine shift with multiplication
Modern Context: These variations led to development of polyalphabetic ciphers like Vigenère
Educational Importance
Why Study Caesar Cipher?
- Foundation Concepts: Introduces substitution cryptography
- Modular Arithmetic: Teaches basic mathematical operations
- Cryptanalysis: Simple to attack and understand weaknesses
- Historical Context: Shows evolution of cryptography
- Programming Practice: Easy to implement and experiment
Modern Uses
Legitimate Uses Today:
- Education: Teaching cryptography basics
- Puzzles: Word games and brain teasers
- Obfuscation: Simple text hiding (not security)
- CTF Competitions: Capture-the-flag challenges
Warning: Never use Caesar cipher for actual security purposes!
Try It Yourself
Exercise 1: Decrypt this message (Caesar cipher)
"WKH TXLFN EURZQ IRA"
Exercise 2: Encrypt your name with shift 5
Exercise 3: Find the key for this ciphertext:
"EBIIL ILDPH"
(Hint: Common greeting)
Tools:
• Online Caesar cipher tools
• Write your own program
• Do it by hand with alphabet wheel
"WKH TXLFN EURZQ IRA"
Exercise 2: Encrypt your name with shift 5
Exercise 3: Find the key for this ciphertext:
"EBIIL ILDPH"
(Hint: Common greeting)
Tools:
• Online Caesar cipher tools
• Write your own program
• Do it by hand with alphabet wheel
Key Takeaways
- Caesar cipher is simplest form of substitution cipher
- Uses fixed shift value for entire alphabet
- Easy to implement but very insecure
- Vulnerable to frequency analysis and brute force
- Important for understanding cryptographic principles
- Led to development of more complex ciphers
Remember: Historical significance ≠ Modern security
Thank You
Questions & Discussion
Next: Columnar Transposition Cipher

